## **Unconventional Resources**



Unconventional Well Evaluation for Completion and Field Development Optimization

### Egypt Vision 2030

#### 

#### World Bank Supports Egypt's Push to Be **Regional Energy Hub**

Tuesday, 9th November 2021



#### f 🗾 🛱 👂 🛨

Π

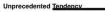
In a meeting with two delegations from the World Bank, Minister of Petroleum and Mineral Resources Tarek El Molla stated that the World Bank's participation in the East Mediterranean Gas Forum (EMGF) as an observer is instrumental in pushing Egypt towards being a regional hub for energy.

During the meeting, he further elaborated that the World

https://egyptoil-gas.com/news/world-banksupports-egypts-push-to-be-regional-energyhub/



Egypt's Western Desert






f 😏 🛱 🦻 🛨 Lobna Hefny

#### By Fatma Mohamed and Lobna Hefny

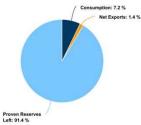
There is an undeniable growing tendency from the government, international companies, and geoscientists to the Western Desert in Egypt. Accelerating trends of Western Desert represent an unprecedented global consensus in the oil and gas industry. This is actually quite typical as conventional oil and gas fields in the Gulf of Suez are nearing maturity and becoming brownfields. Consequently, market players in oil and gas industry have shifted their focus toward the potential of the Western Desert due to its favorable geographical location which covers two-thirds of Egypt.



https://egyptoilgas.com/features/unleashing-treasuresin-egypts-western-desert/

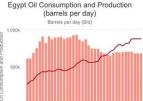
**PetroTechnical Services** 



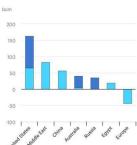

#### See also: List of countries by Oil Production

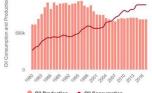
- · Egypt produces 682,904.14 barrels per day of oil (as of 2016) ranking 27th in the world.
- · Egypt produces every year an amount equivalent to 5.7% of its total proven reserves (as of 2016).

#### **Oil Exports**


· Egypt exports 25% of its oil production (169,884 barrels per day in 2016).

Yearly Oil Production (Consumption + Net Exports) as share of Total Proven Reserves





Proven Oil Reserves Barrels

Reserves of Oil



#### Natural gas production growth for Open 2 selected countries and regions. 2017-2023



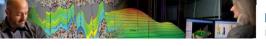


https://www.worldometers.info/

#### Schlumberger

**Global Expertise** 




#### Unconventional Reservoir – Definition...s

[...] the **unconventional reservoir** is the one that cannot be produced at economic flow rates or that does not produce economic volumes of oil and gas without the assistance of massive stimulation treatments or special recovery processes and technologies.

https://petrowiki.spe.org/Unconventional\_resources\_of\_oil\_and\_gas\_from\_a\_geologic\_perspective#:~:text=On%20the%20other%20hand%2C%20the%20unconventional%20reservoir%20is,stimulation%20treatments%20or%20special%20recovery%20processes%20and%20technologies.

The difference between a conventional and unconventional reservoir is migration. The unconventional reservoir has **hydrocarbons that were formed within the rock and never migrated.** The conventional reservoir is a porous rock formation that contains hydrocarbons that have migrated from a source rock (unconventional reservoir).

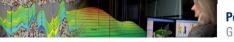
https://wiki.seg.org/wiki/Unconventional\_reservoir



PetroTechnical Services Global Expertise



#### **Unconventional Reservoir - Definition**


[...] the **unconventional reservoir** is the one that cannot be produced at economic flow rates or that does not produce economic volumes of oil and gas without the assistance of massive stimulation treatments or special recovery processes and technologies.

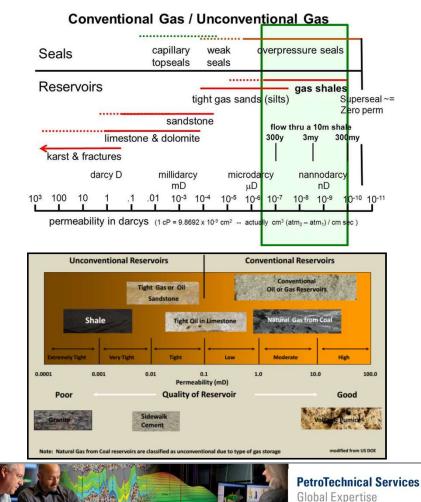
> https://petrowiki.spe.org/Unconventional\_resources\_of\_oil\_and\_gas\_from\_a\_geologic\_perspective#:~:text=On%20the%20other %20hand%2C%20the%20unconventional%20reservoir%20is,stimulation%20treatments%20or%20special%20recovery%20proc esses%20and%20technologies

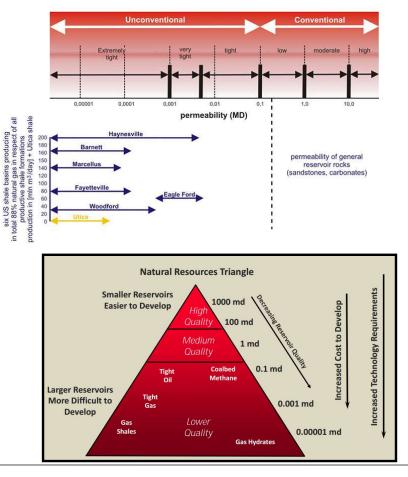
The difference hetween a conventional and unconventional reservoir is migration. The unconventional reservoir has hydrocarbons that were formed within the rock and never migrated. The conventional reservoir is a porous rock formation that contains hydrocarbons that have migrated from a source rock (unconventional reservoir).

Conventional well Oil and gas are accessible using horizontal Oil and gas are accessible using vertical drilling drilling and hydraulic fracturing Oil or gas Fracturing fluid Fracturing fluid containing Oil or gas is collected water, sand, and chemicals and transported. Drinking water aquifers is injected at high pressure. Deoth-less than 150 metres (m) Oil or gas pocket - Flow-back water is recovered. Rock is cracked open (fractured), releasing the oil or gas inside. Highly impermeable rock Depth 1,000m - 4,000m

https://wiki.seg.org/wiki/Unconventional\_reservoir



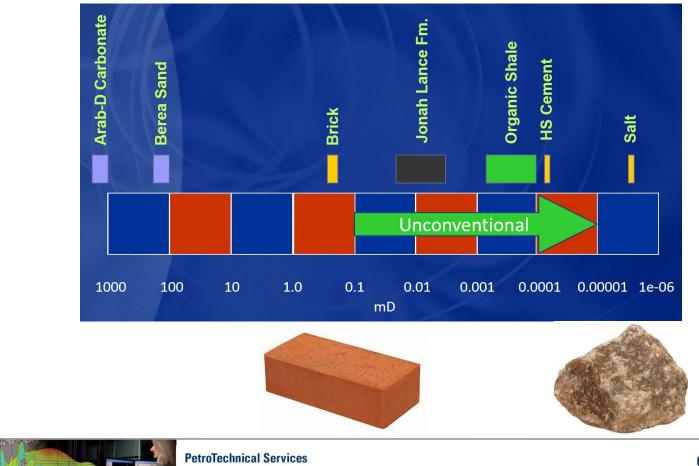

**PetroTechnical Services Global Expertise** 


Schlumberger-Private

#### Schlumberger

Unconventional well

#### Unconventional: Permeability, Porosity – a few numbers






Schlumberger

#### Unconventional: Permeability, Porosity – a few numbers

**Global Expertise** 



Schlumberger

#### Key Parameters vs. Measure of Success

**Geology** Organic richness

Mineral quantification

Gas in place

Permeability

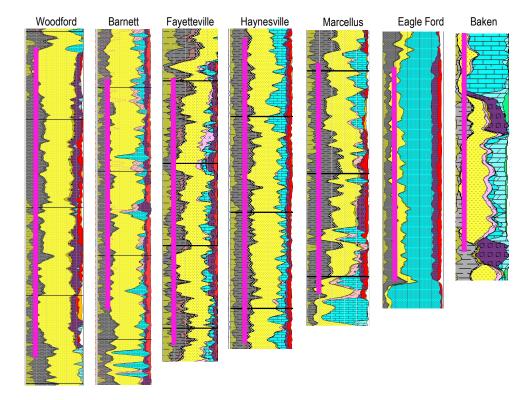
Thermal maturity

Adjacent water bearing formations

Reservoir pressure

#### Engineering

- Frac containment
- Frac conductivity
- Fluid compatibility



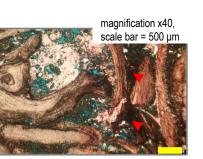

#### Schlumberger



## **Different Lithologies**

|                 | Challenges       |               |           |                    |                  |           |  |  |
|-----------------|------------------|---------------|-----------|--------------------|------------------|-----------|--|--|
| Low<br>Porosity | Low Permeability | Heterogeneity | Fractured | Tight<br>Reservoir | High<br>Porosity |           |  |  |
|                 | Yes              |               |           | Yes                |                  | Carbonate |  |  |
|                 | Yes              |               |           | Yes                |                  | Carbonate |  |  |
|                 | Yes              | Yes           |           |                    |                  | Carbonate |  |  |
| Yes             | Yes              | Yes           |           |                    |                  | Carbonate |  |  |
| Yes             | Yes              |               |           | Yes                |                  | Carbonate |  |  |
|                 | Yes              |               |           |                    | Yes              | Shale     |  |  |
| Yes             |                  |               | Yes       |                    |                  | Igneous   |  |  |
|                 | Yes              |               |           |                    | Yes              | Carbonate |  |  |






PetroTechnical Services Global Expertise

Schlumberger

#### Carbonate Reservoir Challenges





**Rock type RT-2**: moderate clay and micrite fractions, presence of mouldic porosity and reduced intergranular porosity

magnification x5, scale bar = 5 mm



**Rock type RT-1**: no clay, no micrite, developed intergranular porosity

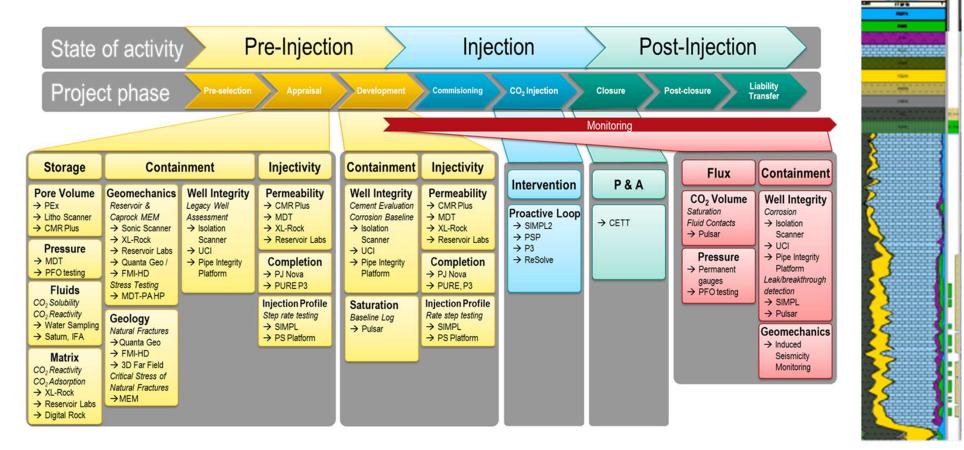
magnification x30,



Rock type RT-3: no clay, prevalent micrite and calcite cementation, no intergranular porosity

#### Tight rock properties

- low porosity ( $\rho_{matrix}$ ?)  $\rightarrow$  mineralogy
- low permeability (small pores / pore throats) → texture
- heterogeneous  $\rightarrow$  mineralogy & texture




PetroTechnical Services Global Expertise

- Complex rock texture and pore network resulting from depositional facies and later diagenesis
  - Impacts determination of oil in place
- Carbonate rock surface has more affinity for oil than for water
  - Impacts determination of oil in place
  - Impacts ultimate oil recovery in waterflood processes
- Carbonate rock are brittle and fracture under tectonic loads
  - Detection and evaluation
  - Fractures either conductive to flow or sealed.
  - Major impact on well productivity / water flood management
- Heterogeneity at different scales
  - Texture variations; wettability
  - Flow barriers (stylolites, dense zones, anhydrite, tar mats)
  - Flow conduits (High permeability streaks, Fracture swarms)
    - Impacts reservoir description and management
    - Impacts water flood management



#### Formation Evaluation – Reservoir Characterization





**PetroTechnical Services Global Expertise** 

#### Schlumberger

Schlumberger-Private

#### **Requirements for Carbonate Evaluation**

Petrophysical parameters

► Basic

Mineralogy and porosity

Saturations

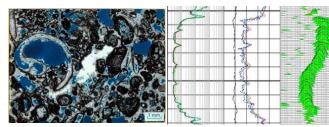
► Permeability

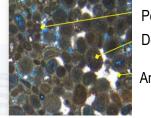
Advanced

- Rock and fluid types
- Capillary pressure curves
- ► Relative permeability

Rapid and accurate evaluation

- Multiple decisions
  - Testing and Sampling decisions
  - ► Completion decisions
  - Reserves evaluation decisions


Must consider both static and dynamic petrophysical properties leading to successful stimulation plan

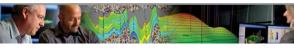



PetroTechnical Services Global Expertise



## Recommended Technologies





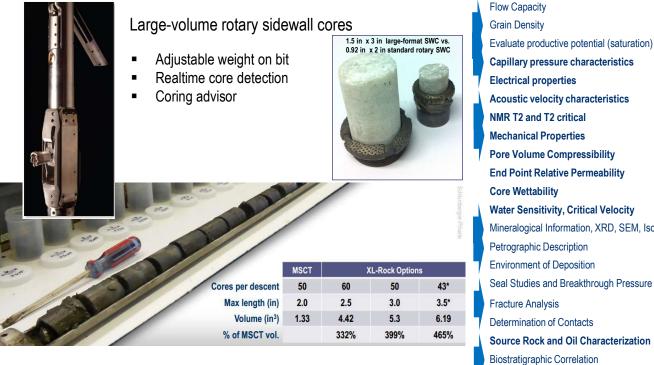

Porosity Dolomite

Anhydrite

| State                                                                                                                 | of activity                                                                | F                                                                     | re-Injecti                                                           | on                                                                                  | Inje                                                                 | ction                                           |                       | Post-Inj                                            | jectior                                                 | 1                                                              |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-----------------------|-----------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|
| Projec                                                                                                                | ct phase                                                                   | Pre-assistion                                                         | Appreisal                                                            | Development                                                                         | Commissioning                                                        | CO <sub>2</sub> Injection                       | Closure<br>Monitoring | Post-closu                                          |                                                         | Liability<br>Transfer                                          |
| Storage                                                                                                               | Conta                                                                      | inment                                                                | Injectivity                                                          | Containment                                                                         | Injectivity                                                          |                                                 |                       |                                                     | Flux                                                    | Containmen                                                     |
| Pore Volume<br>→ PEx<br>→ Litho Scanner<br>→ CMR Plus                                                                 | Geomechanics<br>Reservoir &<br>Caprock MEM<br>→ Sonic Scanner<br>→ XL-Rock | Well Integrity<br>Legacy Well<br>Assessment<br>→ Isolation<br>Scanner | Permeability<br>→ CMR Plus<br>→ MDT<br>→ XL-Rock<br>→ Reservoir Labs | Well Integrity<br>Cement Evaluation<br>Corrosion Baseline<br>→ Isolation<br>Scanner | Permeability<br>→ CMR Plus<br>→ MDT<br>→ XL-Rock<br>→ Reservoir Labs | Intervention Proactive Loop → SIMPL2 → PSP → P3 | P & A                 | CC<br>Satu<br>Fluid                                 | D <sub>2</sub> Volume<br>ration<br>( Contacts<br>Pulsar | Well Integrity<br>Corrosion<br>→ Isolation<br>Scanner<br>→ UCI |
| Pressure<br>→ MDT<br>→ PFO testing<br>Fluids                                                                          | → Reservoir Labs → Quanta Geo / → FMI-HD Stress Testing → MDT_PAHP         | FMI-HD Platform<br>tress Testing                                      | Completion<br>→ PJ Nova<br>→ PURE P3                                 | Platform → PJ                                                                       | Completion<br>→ PJ Nova<br>→ PURE, P3                                | → ReSolve                                       |                       | Pressur     → Permanent     gauges     → PFO testin | Permanent<br>Jauges                                     | → Pipe integrity<br>Platform<br>Leak/breakthrough<br>detection |
| CO <sub>2</sub> Solubility<br>CO <sub>2</sub> Reactivity<br>→ Water Sampling<br>→ Saturn, IFA                         | Geology<br>Natural Fractures<br>→ Quarta Geo                               |                                                                       | Injection Profile<br>Step rate testing<br>→ SIMPL<br>→ PS Platform   | Saturation<br>Baseline Log<br>→ Pulsar                                              | Injection Profile<br>Rate step testing<br>→ SIMPL<br>→ PS Platform   |                                                 |                       |                                                     |                                                         | → SMPL     → Pulsar     Geomechanic     → Induced              |
| Matrix<br>CO <sub>2</sub> Reactivity<br>CO <sub>2</sub> Adsorption<br>→ XL-Rock<br>→ Reservoir Labs<br>→ Digital Rock | → FMI-HD → 30 Far Field Critical Stress of Natural Fractures → MEM         |                                                                       |                                                                      |                                                                                     | 1                                                                    |                                                 |                       |                                                     |                                                         | Seismicity<br>Monitoring                                       |

| Formation property    | rmation property Evaluation challenge     |                                                               | Applications                                          |  |  |
|-----------------------|-------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--|--|
| Mineralogy            | Complex porosity system, carbonate typing | Litho Scanner                                                 | Mineralogy and matrix properties                      |  |  |
|                       |                                           | Litho Scanner, MR Direct hydrocarbon volume from organic carb |                                                       |  |  |
| Hydrocarbon volumes   | Non-Archie rock, low resistivity contrast | Scanner (if porosity)                                         | direct fluid frcations and volumes from D-T1-T2       |  |  |
|                       |                                           | CMR, MR Scanner, Pore size distribution, porosity bin p       |                                                       |  |  |
|                       | Microporosity                             | croporosity Dielectric Scanner distribution                   |                                                       |  |  |
| Texture Permeability  |                                           | CMR /MR Scanner                                               | Correlation to pore sizes (Macro)                     |  |  |
|                       |                                           | The first stranding and software to the end                   | Wettability index from T2 distribution and mn textura |  |  |
| Wettability           |                                           | CMR, Dielectric Scanner                                       | parameters from dielectric                            |  |  |
| Fracture and stresses | Complex fracture networing, connectivity  | Sonic Scanner                                                 | Anisotropy analysis, Stoneley inversion               |  |  |
|                       |                                           | Anisotropy analysis and radial profiling to map variat        |                                                       |  |  |
| Mechanical properties | Stress and rock strenght                  | Sonic Scanner elastic properties and fracture                 |                                                       |  |  |




12

PetroTechnical Services Global Expertise



### Sidewall Core – Heterogeneous Reservoir calls for Core Analysis

#### XL-Rock Large Volume Sidewall Coring



|         |                |                  | NMR T2 and T2 critical                       |   |
|---------|----------------|------------------|----------------------------------------------|---|
| A       |                |                  | Mechanical Properties                        |   |
|         |                |                  | Pore Volume Compressibility                  |   |
|         | -              |                  | End Point Relative Permeability              |   |
| /       |                | Schlu            | Core Wettability                             |   |
|         |                | mberge           | Water Sensitivity, Critical Velocity         |   |
| r-Priva |                | oong er-Priva te | Mineralogical Information, XRD, SEM, Isotope | V |
| 6       |                |                  | Petrographic Description                     | V |
| )       | (L-Rock Option | s                | Environment of Deposition                    |   |
| 60      | 50             | 43*              | Seal Studies and Breakthrough Pressure       |   |
| 2.5     | 3.0            | 3.5*             | Fracture Analysis                            |   |
| 4.42    | 5.3            | 6.19             | Determination of Contacts                    |   |
| 332%    | 399%           | 465%             | Source Rock and Oil Characterization         |   |
|         |                |                  | Biostratigraphic Correlation                 |   |
|         |                |                  | Grain Size Analysis                          |   |
|         |                |                  |                                              |   |

Storage Capacity

| SCT  | XL-Rock | Micro-Imaging Benefits :                                       |
|------|---------|----------------------------------------------------------------|
| OOD  | V. GOOD | 1. Continuous & In-situ description of structure and fabric    |
| OOD  | V. GOOD | 2. Oriented measurements with azimuthal coverage               |
|      |         | 3. Convenient for upscaling & matching with other data         |
| OOD  | V. GOOD | Residive FMI Image Cenductive                                  |
| OOD  | V. GOOD | Like to rank a                                                 |
| OOD  | V. GOOD |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    |                                                                |
| GOOD | V. GOOD |                                                                |
| GOOD | V. GOOD |                                                                |
| AIR  | GOOD    |                                                                |
| AIR  | GOOD    | XL-Rock cores                                                  |
| OOR  | FAIR    | Sidewall Core (SWC) Benefits :                                 |
|      |         | 1 Efficient and cost effective recovery of high quality rock a |

FAIR

GOOD

FAIR

GOOD

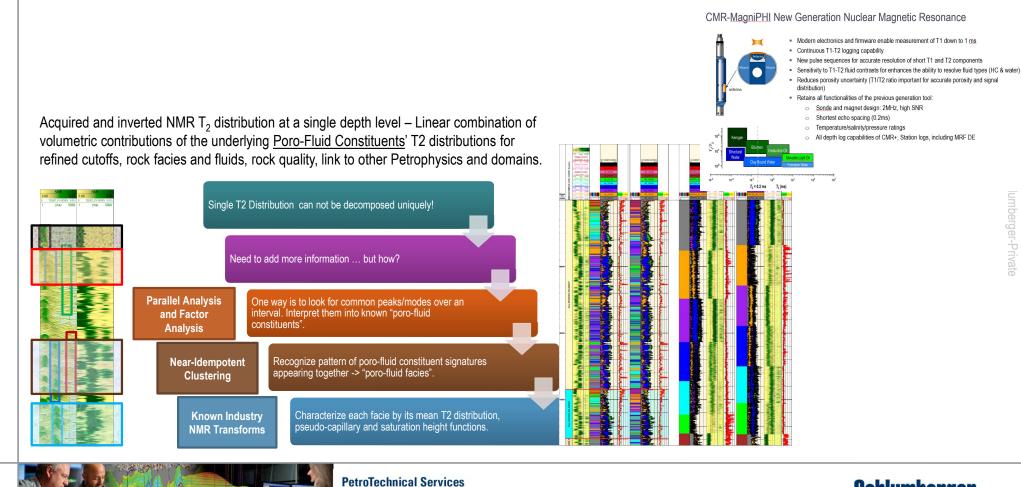
GOOD

V. GOOD

GOOD V. GOOD 1. Efficient and cost-effective recovery of high quality rock samples

Schlumberger-Private

- 2. Multiple attempts / options to obtain required samples
- 3. Selective core sampling based on previous log measurements



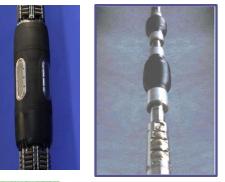

**PetroTechnical Services** 

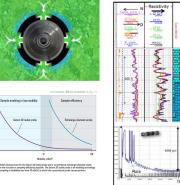
**Global Expertise** 

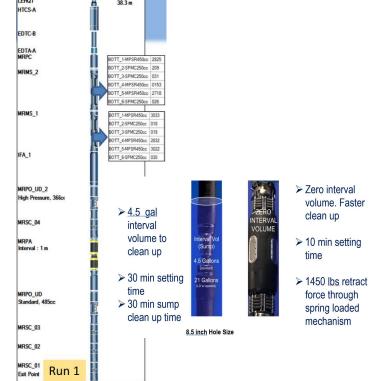
Schlumberger-Private

### NMR – Free vs. Bound fluid & Quantification vs Fluid Typing




Schlumberger-Private


**Global Expertise** 


## Live Fluid Analysis - Heterogeneous Reservoir calls for Fluid Identification and Sampling

- Fractured / Vuggy Formations
- Unconsolidated Formations\*
- Tight / Super Charged Formations
- Other applications:
  - Mini-Frac /Stress Testing; Mini-DST
  - Vertical Interference Test

| Max DD             | LD<br>Probe                    | XLD<br>Probe                   | Saturn                       | Dual Packer                         |  |  |
|--------------------|--------------------------------|--------------------------------|------------------------------|-------------------------------------|--|--|
| Max DD             | Equivalent<br>Radius:<br>0.52" | Equivalent<br>Radius:<br>0.82" | Equivalent<br>Radius: 7.375" | Packer<br>Interval Height:<br>3.2ft |  |  |
| Viscosity<br>20 cP | 4786 psi                       | 2999 psi                       | 201.6 psi                    | 52.9 psi                            |  |  |
| Viscosity<br>10 cP | 2393 psi                       | 1499.5 psi                     | 100.9 psi                    | 26.5 psi                            |  |  |











Se Schlumberger-Private

- Physical properties of interest have characteristic length and time scales
- Dictate use of different tools to perform measurements
- Crystal structure is small scale
- Core testing
- > Thin sections
- > Geologically oriented
- •Well logs are intermediate scale
- > Petrophysical measurements
- Borehole seismic
- > Interplay of geology and geophysics
- Fields are large scale
- > Geophysics
- ✓ Surface seismic
- ✓ Potential field methods
- > Geology
- ✓ Well correlation
- ✓ Depositional patterns



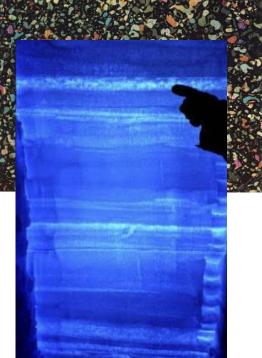
PetroTechnical Services Global Expertise



- Physical properties of interest have characteristic length and time scales
- Dictate use of different tools to perform measurements
- Crystal structure is small scale
- Core testing
- Thin sections
- > Geologically oriented
- •Well logs are intermediate scale
- > Petrophysical measurements
- > Borehole seismic
- > Interplay of geology and geophysics
- Fields are large scale
- Geophysics
- ✓ Surface seismic
- ✓ Potential field methods
- Geology
- ✓ Well correlation
- ✓ Depositional patterns






Schlumberger-Private

**PetroTechnical Services** 

**Global Expertise** 

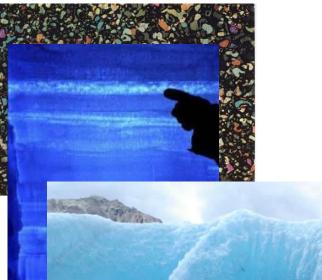
- Physical properties of interest have characteristic length and time scales
- Dictate use of different tools to perform measurements
- Crystal structure is small scale
- Core testing
- > Thin sections
- Geologically oriented
- •Well logs are intermediate scale
- > Petrophysical measurements
- Borehole seismic
- > Interplay of geology and geophysics
- Fields are large scale
- Geophysics
- ✓ Surface seismic
- ✓ Potential field methods
- Geology
- ✓ Well correlation
- ✓ Depositional patterns





Schlumberger-Private

**PetroTechnical Services** 


**Global Expertise** 

- Physical properties of interest have characteristic length and time scales
- Dictate use of different tools to perform measurements
- Crystal structure is small scale
- Core testing
- > Thin sections
- > Geologically oriented
- •Well logs are intermediate scale
- > Petrophysical measurements
- Borehole seismic
- > Interplay of geology and geophysics
- Fields are large scale
- Geophysics
- ✓ Surface seismic
- ✓ Potential field methods
- Geology

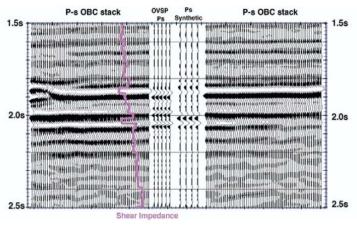
19

- ✓ Well correlation
- Depositional patterns








Schlumberger-Private

## Schlumberger-Private

#### Scaling Effect on Measurement

- Sonic logging/synthetic seismograms
  - Want to see detailed velocity structure at well
  - Requires large bandwidth (several kHz)
  - Requires small source receiver spacing (2-11 ft)
  - Microsecond time scales
  - Waves make one-way trip
    - Dominant concern is borehole conditions
- VSP/borehole seismic
  - Want to see a bigger picture around the well
  - Small bandwidth
    - Spans approximately 10-100 Hz
    - Requires large source-receiver offsets
  - Millisecond time scales
  - Waves make one-way trip
    - Signal attenuation an issue but not dominant
    - Scattering and absorption not as important since waves travel one way
- Surface seismic
  - Want to see the whole field
  - Small bandwidth
  - Spans approximately 10-500 Hz
  - Large source-receiver offsets
  - Millisecond time scales
  - Waves make two-way trip
    - Scattering, attenuation, transmission losses become major concerns





Leaney et al., Borehole-integrated anisotropic processing of converted modes, The Leading Edge (20), 996-1007, September 2001

## Agreement between different types of data sets increases confidence in interpretation

- Processing workflows different
- Assumptions about physical processes different
- Artifacts different



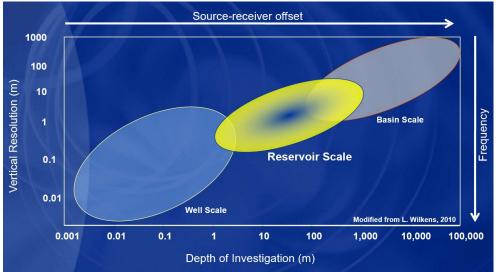
Schlumberger-Private

**PetroTechnical Services** 

**Global Expertise** 

20

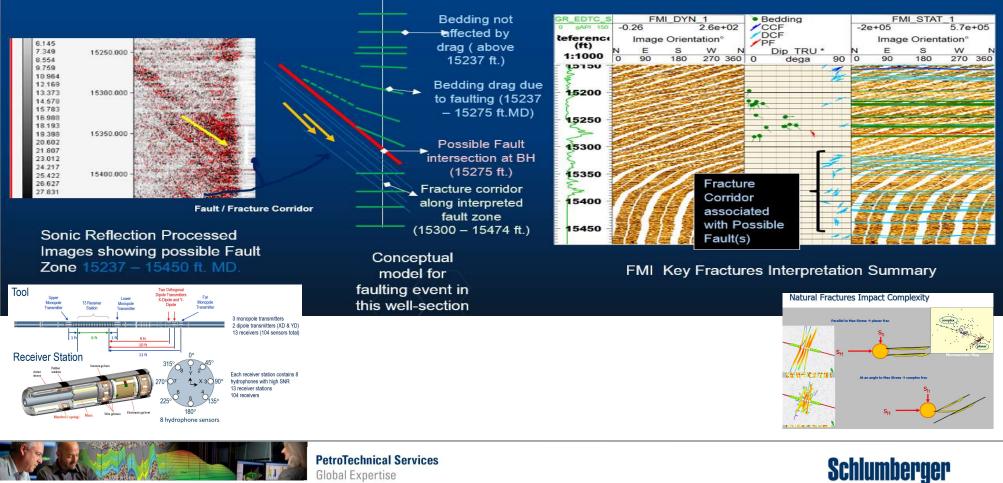
### Scaling Effect on Measurement


- Sonic logging/synthetic seismograms
  - Want to see detailed velocity structure at well
  - Requires large bandwidth (several kHz)
  - Requires small source receiver spacing (2-11 ft)
  - Microsecond time scales
  - Waves make one-way trip
    - Dominant concern is borehole conditions
- VSP/borehole seismic
  - Want to see a bigger picture around the well
  - Small bandwidth
    - Spans approximately 10-100 Hz
    - Requires large source-receiver offsets
  - Millisecond time scales
  - Waves make one-way trip
    - Signal attenuation an issue but not dominant
    - Scattering and absorption not as important since waves travel one way
- Surface seismic
  - Want to see the whole field
  - Small bandwidth
  - Spans approximately 10-500 Hz
  - Large source-receiver offsets
  - Millisecond time scales
  - Waves make two-way trip
    - Scattering, attenuation, transmission losses become major concerns



PetroTechnical Services Global Expertise

Schlumberger-Private


#### Multi-scale investigation



## Agreement between different types of data sets increases confidence in interpretation

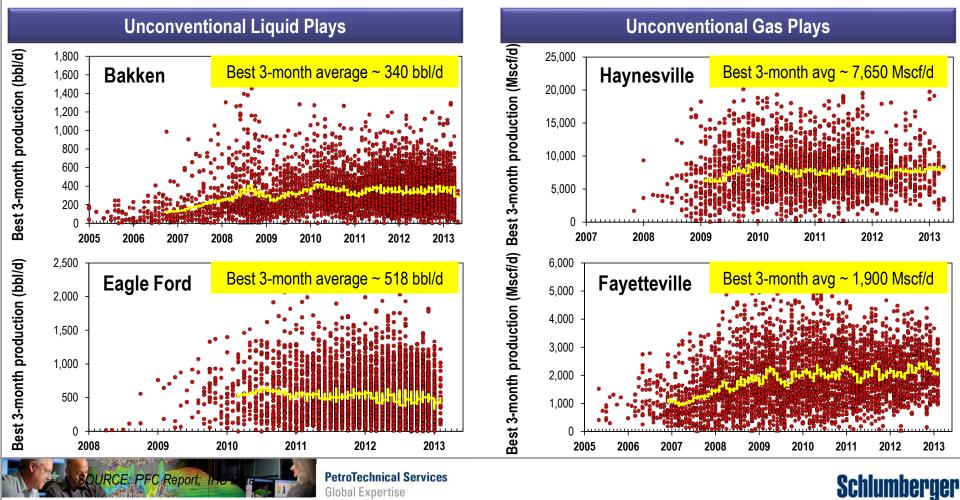
- Processing workflows different
- Assumptions about physical processes different
- Artifacts different

#### **Imaging Natural Fractures**



### **Unconventional Resources - Optimization Strategy**

#### Unconventional Reservoir Optimized Completion Workflow



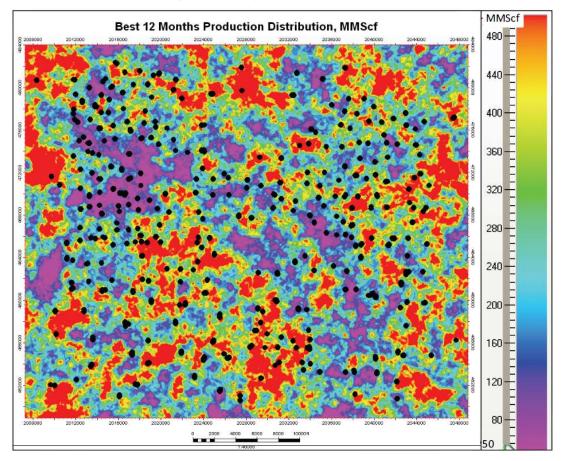

**Global Expertise** 

Schlumberger-Private

Schlumberger

23

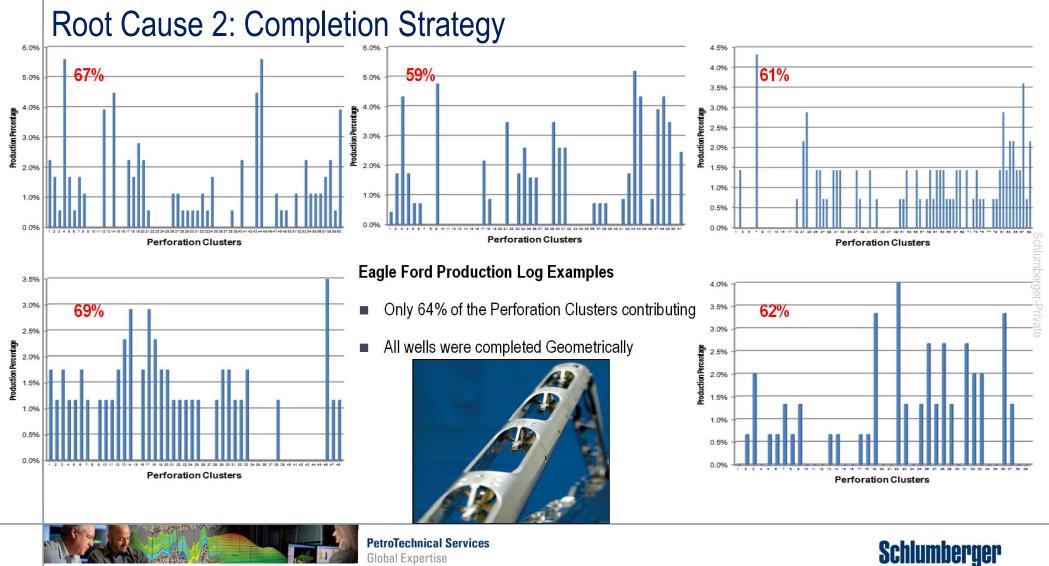


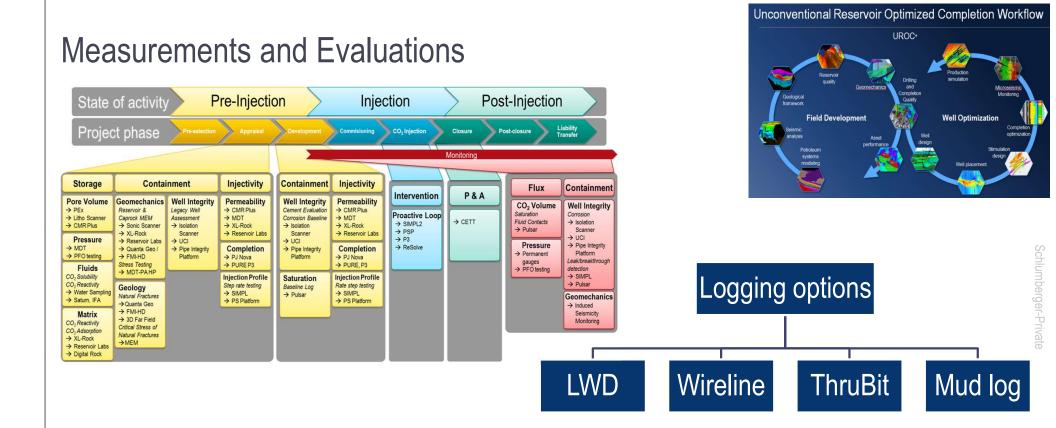

#### Introduction

Schlumberger-Private

#### Root Cause 1: Field Scale Lateral Heterogeneity

High degree of production variability across 50 sq. mi area.


SPE 138427



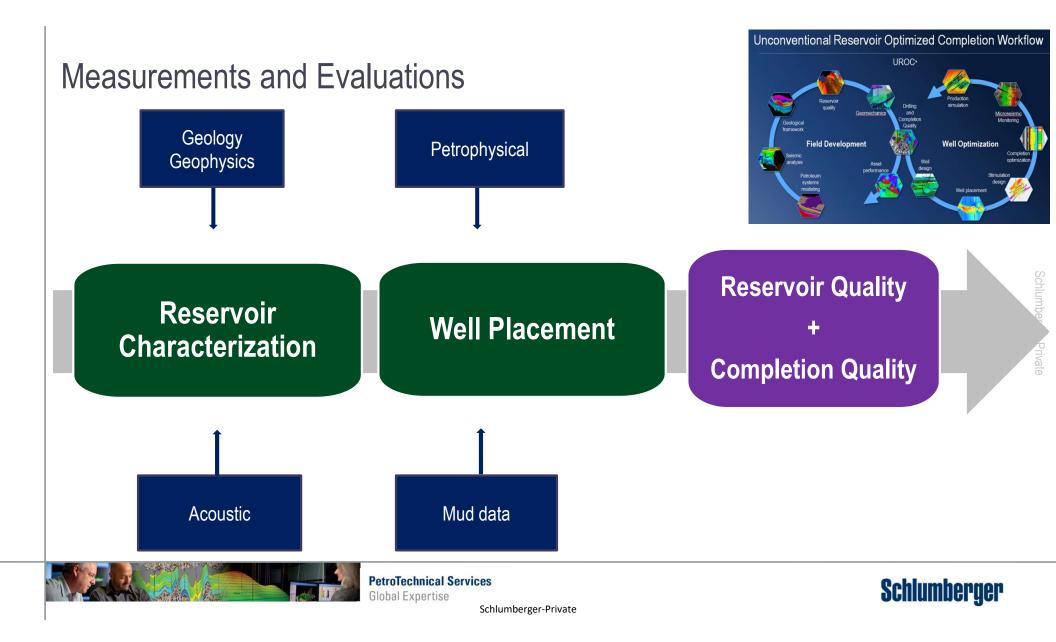



PetroTechnical Services Global Expertise

Schlumberger-Private






#### Measurement is the key to integrated evaluation

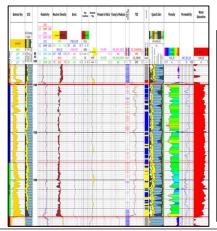


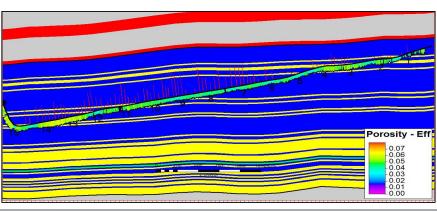
**PetroTechnical Services** 

Global Expertise


Schlumberger




### Horizontal Well Evaluation Rock Quality Workflow




| Color/Rock Type                |       |       |       |       |       |
|--------------------------------|-------|-------|-------|-------|-------|
| Clay Volume Fraction (v/v)     | 0.134 | 0.294 | 0.434 | 0.055 | 0.210 |
| Effective Porosity (v/v)       | 0.074 | 0.068 | 0.034 | 0.039 | 0.016 |
| Permeability (nD)              | 245   | 133   | 23    | 24    | 10    |
| Total Organic Carbon (weight % | 4.9%  | 4.3%  | 2.2%  | 3.0%  | 1.9%  |
| Thermal Neutron Porosity (v/v) | 0.162 | 0.208 | 0.212 | 0.086 | 0.102 |
| Bulk Density (g/cc)            | 2.422 | 2.449 | 2.565 | 2.519 | 2.579 |
| Gamma Ray (gAPI)               | 67.9  | 87.0  | 99.4  | 49.9  | 69.6  |

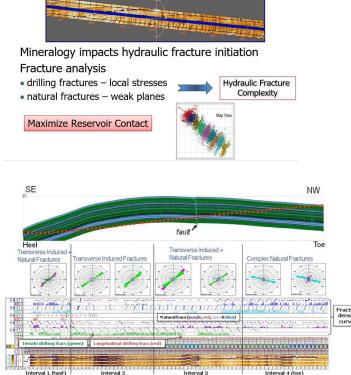


"RQ-Good" "RQ-Bad"





Global Expertise Schlumberger-Private


**PetroTechnical Services** 

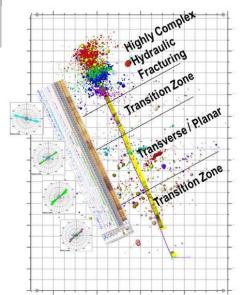
# Schlumberger-Private



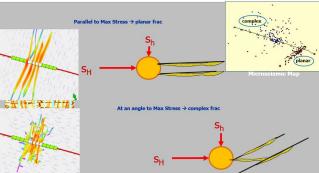
#### Objective

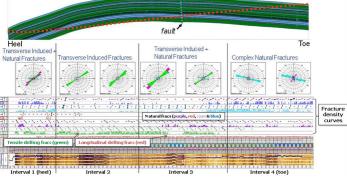
Better Understand the Geological Drivers for Completion Quality





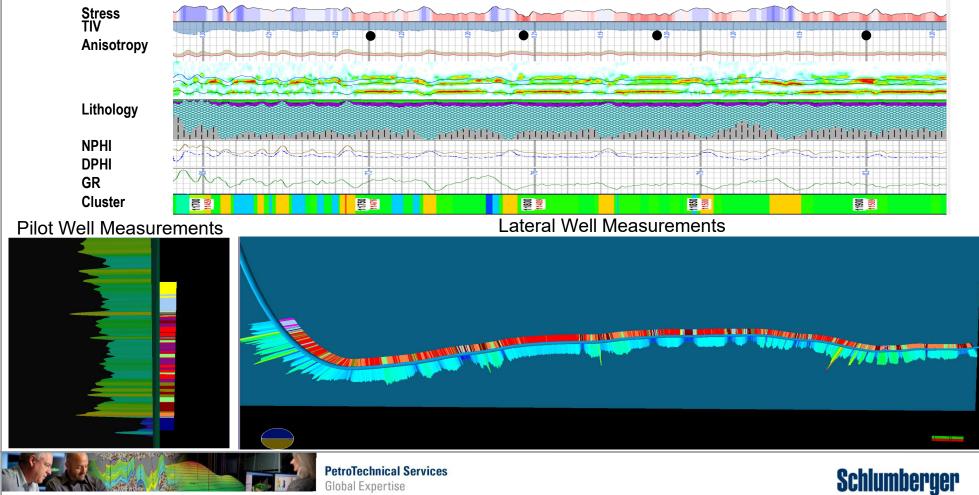

**PetroTechnical Services Global Expertise** 


Schlumberger-Private


FILL RESTRICT

#### Schlumberger




#### Natural Fractures Impact Complexity



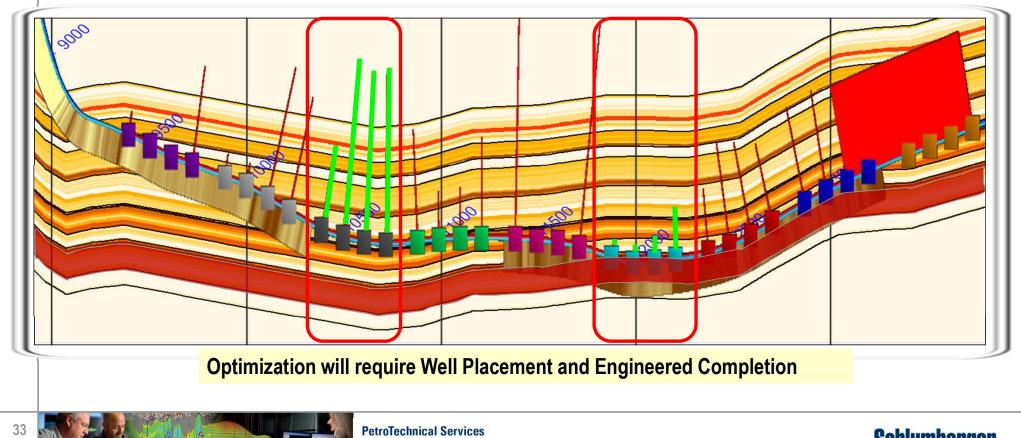


# Schlumberger-Private



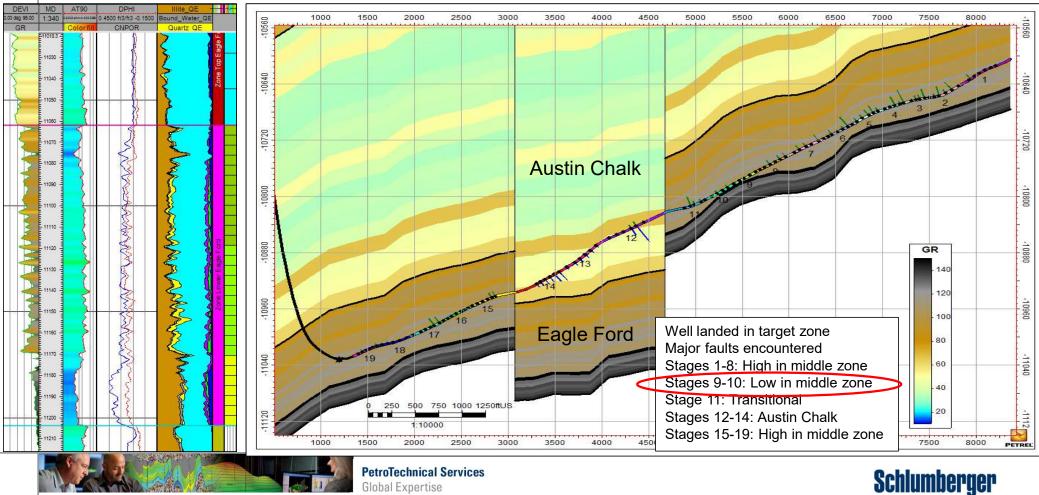


### Integrating RQ and CQ in the Completion Design

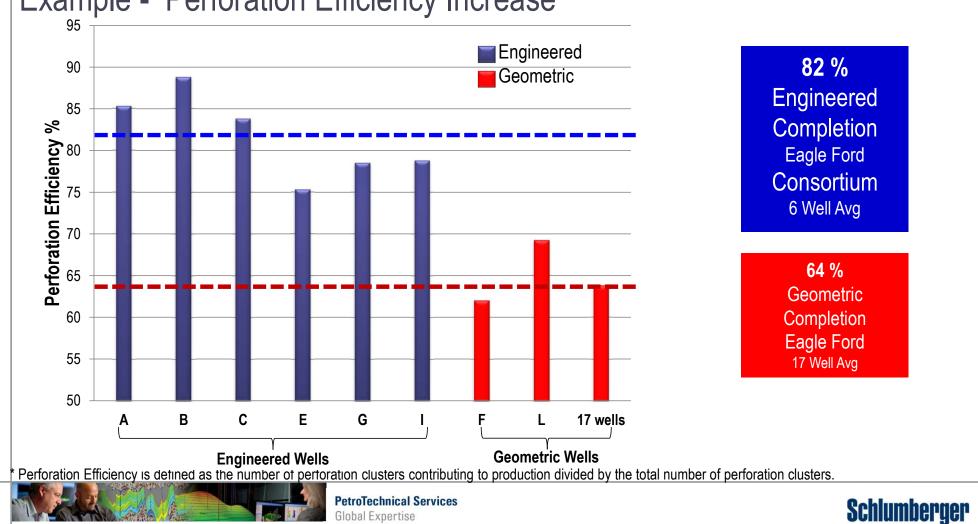

1000-GB GG GG Composite B B B GG B B GB 盟 昍 950<sup>-</sup> Good Good Good Good Good Good Bad Bad Bad CQ Bad Bad 900-Good Good Good Good 850-Bad ad RQ 800 Engineered 750-Stage 16 Stage 15 700-650<sup>-</sup> Geometric Stage 15 Stage 14 600-0000 03000 550-VClay AA A. M 500-460 psi TXSG\_TIV 450-Geometric **Stress Gradient** 400-Muthin many with the work to want the ward the work of the 350-PIGN Porosity 300-250-Engineered 200-150-Mineralogy VUGA 100-50-12600 12650 12800 12350 2400 12450 12500 2550 12700 12850 12900 2300 0 2241 **PetroTechnical Services** Schlumberger **Global Expertise** 

Kinetix Completion Advisor

## Well Placement Matters

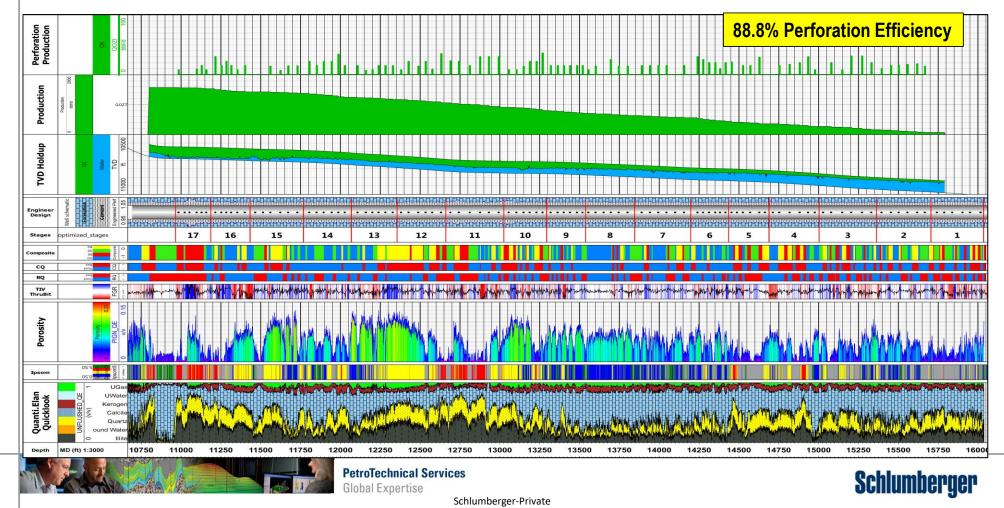

**19% of Total Well Production** 

3% of Total Well Production




33

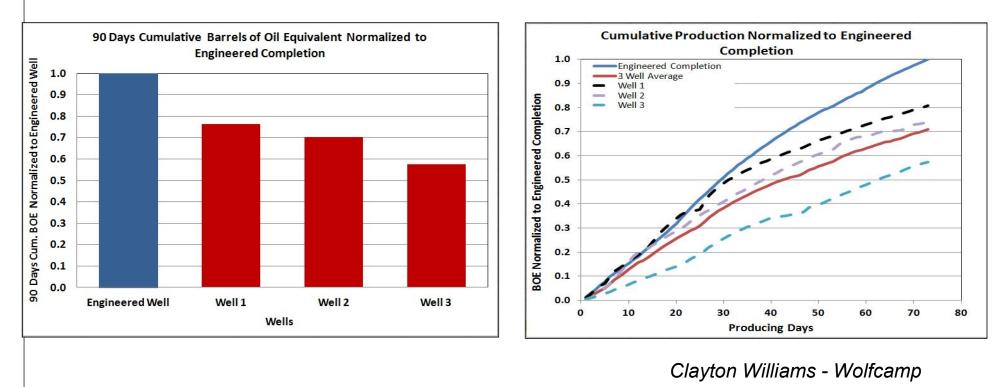
**Global Expertise** Schlumberger-Private

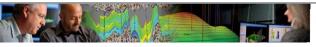



#### **Well Placement Matters**



#### **Example - Perforation Efficiency Increase**


## Example - Perforation Efficiency Increase




# Schlumberger-Private

#### **Example - Production Increase**

39% increase in 90 days cumulative oil production on engineered well compared to best offset well.



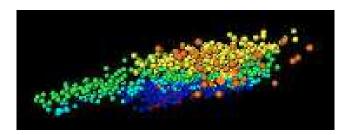


PetroTechnical Services Global Expertise

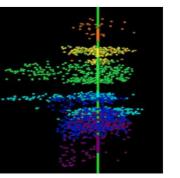
Schlumberger-Private

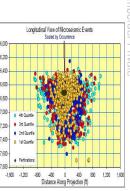
#### Monitoring Injection Efficiency

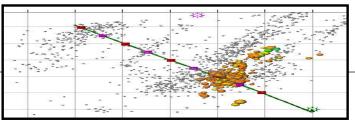



Well placement without fracture detection

Well placement with HFM fracture geometry


Coverage


Heating Pressure ( 5) 4850 4920 6200


Integration of reservoir properties, fracture modeling and micro seismic detection aid in reservoir optimization (SPE 102493)



#### Actual microseismic map of a 6 stage completion

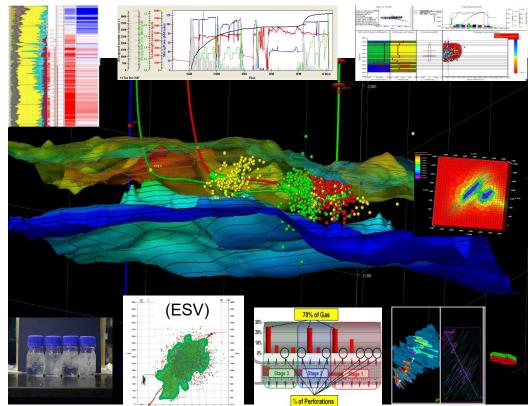


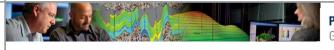




· Zonal: is the pay zone targeted covered?

- Lateral: is the opened zone properly stimulated?
- Vertical Fracture Growth •
- Fracture (System) Half-Length •
- Complex Fracture Network and/or Multiple Fractures •
- Zonal Isolation (i.e., toe vs. heel) •
- Structures (i.e., fault, pinch-out) identification •

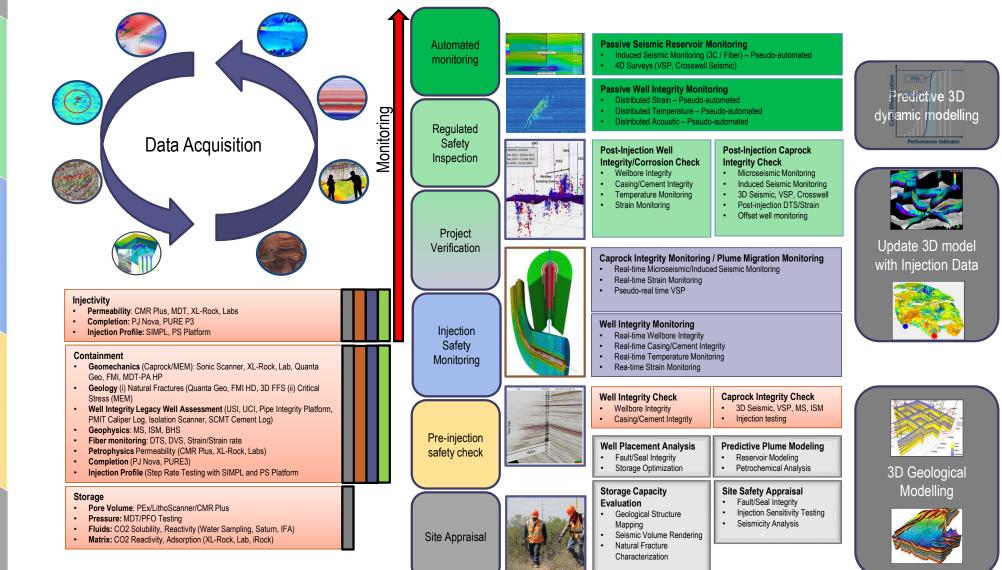

**PetroTechnical Services Global Expertise** 


Schlumberger-Private

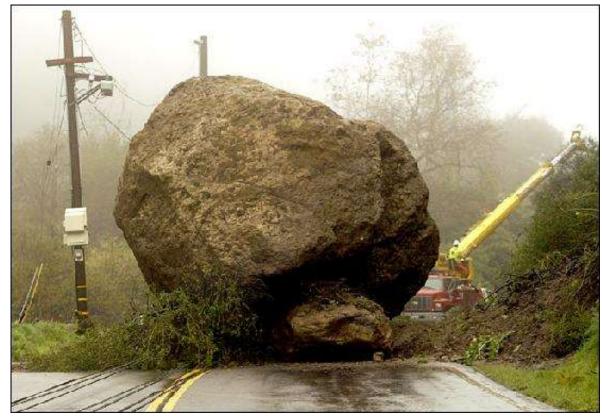
38

#### Summary

- Reservoir characterization is essential for effective completion.
- Measurements is the key.
- Proper well placement maximizes production.
- Data integration is critical.







PetroTechnical Services Global Expertise Schlumberger-Private



39

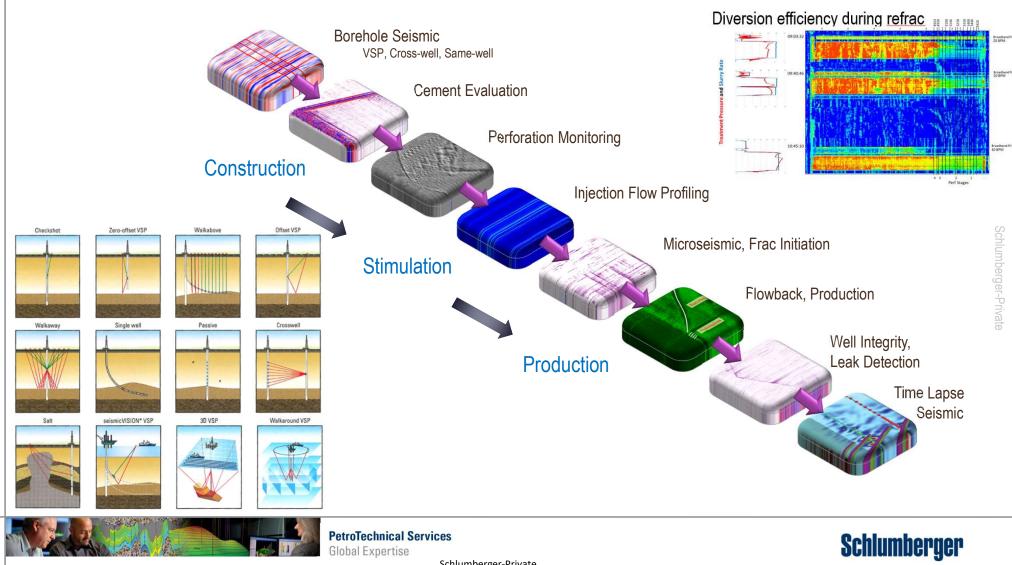


## Roadblock to Successful Production from Unconventional Formations: Is Proppant Too Big?





PetroTechnical Services Global Expertise


## Successful Production from Unconventional Formations Is About Applying the Right Combination of Technologies





PetroTechnical Services Global Expertise

Schlumberger-Private



Schlumberger-Private

43